Hands-on introduction to ChIP-Seq analysis ### **Morgane Thomas-Chollier** mthomas@biologie.ens.fr Computational Systems Biology Institut de Biologie de l'Ecole Normale Supérieure, **Paris, France** VIB Bioinformatics Training – Leuven (Belgium) – 1st June 2015 # Goal and organisation of the day ### Goal: introduction to ChIP-seq data analysis - processing steps: from reads to peaks. - · downstream analyses: - deciding which downstream analyses to perform depending on the biological question. - focus on motif analyses ### Schedule 09h30-10h00 Short introduction, computer warm-up, overview of the analyses 10h00-12h30 Hands-on training: processing steps LUNCH ☺ 13h15-15h15 Hands-on training: downstream analysis: motifs 15h30-17h00 Discussion, feedback and questions Don't hesitate to ask questions © ## Why will we use the command-line? - To use a program, you usually click on the program's icon. e.g. Firefox - The command-line is the « secret backdoor » to use a program. You need a shell (= Terminal) and type the name of the program you want to launch - Why is it useful (and mandatory sometimes!): - Some programs can only be run from the command-line (no icon for them) - When you want to use a program that is not directly installed on your machine. You can connect to a remote machine via the terminal, and run the program there. - To run the same program 1000 times, you might not want to click on the icon 1000 times. Instead, you can write a short program that will automatically run its command-line 1000 times. ### in vivo experimental methods to identify binding sites **ChIP** (=Chromatin Immuno-Precipitation) DNA-protein cross-linking => differences in methods to detect the bound DNA Cell lysis -small-scale: PCR / qPCR Sonication or enzyme digestion - large-scale: - microarray = ChIP-on-chip Fragmented chromatin - sequencing = ChIP-seq Immune precipitate (ChIP material) Main challenge: DNA purification -quality/specificity of the antibodies PCR Morgane Thomas-Chollier http://www.chip-antibodies.com/ # • find all regions in the genome bound by • a specific transcription factor • histones bearing a specific modification • in a given experimental condition (cell type, developmental stage,...) The obtain ChIP-seq profiles have different shapes, depending on the targeted protein Morgane Thomas-Chollier Cur-seq applications C - Go to the companion website - Read the introduction - Follow all steps of Downloading ChIP-seq reads from NCBI • Go to the companion website http://www.biologie.ens.fr/~mthomas/other/chip-seq-training/index.html • Follow all steps of Quality control of the reads and statistics - Go to the companion website - Follow all steps of Mapping the reads with Bowtie - Go to the companion website - Follow all steps of Peak calling with MACS # Peak-calling step - Treating the reads (tag shifting or elongation) - Modelling noise levels (input) - Scaling datasets - Detecting enriched/peak regions # Peak-calling step - Treating the reads (tag shifting or elongation) - Modelling noise levels (input) - Scaling datasets - Detecting enriched/peak regions Carl Herrmann | | | Profile | Peak criteria ^a | Tag shift | Control data ^b | Rank by | FDR ^c | User input
parameters ^d | filtering:
strand-based
duplicate ^e | | |----------|-----------------------|---------------------------------------|--|--|---|---------------------------------------|---|---|--|---------| | | CisGenome
v1.1 | Strand-specific
window scan | 1: Number of reads
in window
2: Number of
ChIP reads minus
control reads in
window | Average
for highest
ranking peak
pairs | Conditional
binomial used to
estimate FDR | Number of
reads under
peak | 1: Negative
binomial
2: conditional
binomial | Target FDR,
optional window
width, window
interval | Yes / Yes | | | | ERANGE
v3.1 | Tag
aggregation | 1: Height cutoff
High quality peak
estimate, per-
region estimate,
or input | High quality
peak estimate,
per-region
estimate, or
input | Used to calculate fold enrichment and optionally P values | P value | 1: None
2: # control
ChIP | Optional peak
height, ratio to
background | Yes / No | | | | FindPeaks
v3.1,9.2 | Aggregation
of overlapped
tags | Height threshold | Input or estimated | NA | Number of
reads under
peak | 1: Monte Carlo
simulation
2: NA | Minimum peak
height, subpeak
valley depth | Yes / Yes | | | | F-Seq
v1.82 | Kernel density
estimation
(KDE) | s s.d. above KDE
for 1: random
background, 2:
control | Input or estimated | KDE for local
background | Peak height | 1: None
2: None | Threshold s.d.
value, KDE
bandwidth | No / No | | | | GLITR | Aggregation
of overlapped
tags | Classification
by height
and relative
enrichment | User input tag
extension | Multiply sampled
to estimate
background class
values | Peak height
and fold
enrichment | 2: # control
ChIP | Target FDR,
number nearest
neighbors for
clustering | No / No | | | | MACS
v1.3.5 | Tags shifted
then window
scan | Local region
Poisson P value | Estimate from
high quality
peak pairs | Used for Poisson
fit when available | P value | 1: None
2: # control
ChIP | P-value threshold,
tag length, mfold
for shift estimate | No / Yes | | | | PeakSeq | Extended tag
aggregation | Local region
binomial P value | Input tag
extension
length | Used for
significance of
sample enrichment
with binomial
distribution | q value | 1: Poisson
background
assumption
2: From
binomial for
sample plus
control | Target FDR | No / No | | | | QuEST
v2.3 | Kernel density
estimation | 2: Height
threshold,
background ratio | Mode of local
shifts that
maximize
strand cross-
correlation | KDE for
enrichment and
empirical FDR
estimation | q value | 1: NA 2: # control # ChIP as a function of profile threshold | | Yes / Yes | | | | SICER
v1.02 | Window scan
with gaps
allowed | P value from
random
background
model, enrichment
relative to control | Input | Linearly rescaled
for candidate peak
rejection and P
values | q value | 1: None
2: From Poisson
P values | (with control) or
F-value | No / Yes | | | | SiSSRs
v1.4 | Window scan | N ₊ - N ₋ sign
change, N ₊ +
N ₋ threshold in
region ^f | Average
nearest paired
tag distance | Compu
studies | | n for | ChIP-s | eq and | l RNA-s | | Herrmann | spp
v1.0 | Strand specific
window scan | Poisson P value
(paired peaks
only) | Maximal
strand cross-
correlation | Shirley Pepke ¹ | , Barbara \ | Wold ² & Ali N | Mortazavi ² | | | ## Peak-calling with MACS: overview 1 : search high-quality paired peaks : separates their forward and reverse reads, and aligns them by the midpoint. The distance between the modes of the forward and reverse peaks in the alignment is defined as d, and MACS shifts all reads by d/2 toward the 3' ends to better locate the precise binding sites. 2: uses the shift size to search for peaks, Poisson distribution to measure the p-value of each peak, and False Discovery Rate (FDR) calculation using the input data Feng, J., Liu, T., & Zhang, Y. (2011). Using MACS to Identify Peaks from ChIP-Seq Data, Current Protocols in Bioinformatics ### 1 – modelling the read shift size MACS [Zhang et al. Genome Biol. 2008] ### • Step 1: estimating fragment length d - slide a window of size BANDWIDTH - retain top regions with MFOLD enrichment of treatment vs. input - plot average +/- strand read densities → estimate d Carl Herrmann # Peak-calling programs - Strong influence on the called peaks - Many different programs - They do not share the same « default » threshold to retain peaks - The top highest peaks are usually common, but the less obvious peaks are often not shared between different peak callers Morgane Thomas-Chollier Mali Salmon-Divon et al, BMC Bioinformatics, 2010 # Peak-calling programs - To be chosen according to type of expected peaks - Transcription factors and « sharp » peaks: MACS2 for TF: --call-summits - Chromatin marks and « broad peaks » MACS2 --broad - Many new programs still developped! - Go to the companion website - Follow all steps of Visualizing the peaks in a genome browser - If you have the time, do the **bonus** exercise | What is the biological question ? | |---| | « see if you can find something in the data » | | | | | | Morgane Thomas-Chollier | | | | | | | | | | | | M/hat is the higherical guestion 2 | | What is the biological question? | | « see if you can find something in the data » | | | | | | Morgane Thomas-Chollier | ### What is the biological question? - Where do a transcription factor (TF) bind? - ✓ In a specific context (tissue, developmental stage, mutant) - √ By comparison to another context (WT vs mutant, different time points) Morgane Thomas-Chollier # What is the biological question? - Where do a transcription factor (TF) bind? - ✓ In a specific context (tissue, developmental stage, mutant) - √ By comparison to another context (WT vs mutant, different time points) - How do a transcription factor (TF) bind? - √ Which binding motif(s) (can be several for a given TF !!) - ✓ Is the binding direct to DNA or via protein-protein interactions? - ✓ Are there cofactors (maybe affecting the motif !!), and if so, identify them ### What is the biological question? - Where do a transcription factor (TF) bind? - ✓ In a specific context (tissue, developmental stage, mutant) - ✓ By comparison to another context (WT vs mutant, different time points) - How do a transcription factor (TF) bind? - √ Which binding motif(s) (can be several for a given TF !!) - ✓ Is the binding direct to DNA or via protein-protein interactions? - ✓ Are there cofactors (maybe affecting the motif !!), and if so, identify them - Which regulated genes are directly regulated by a given TF? - What are the targets of a given TF? - Where are the promoters (Polli) and chromatin marks? Morgane Thomas-Chollier ## What is the biological question? → Should drive all « downstream » analyses Morgane Thomas-Chollier Nature Reviews | Genetics # What is the biological question? → Should drive all « downstream » analyses Visualization with genome advanced analysis Will take time to « do it all » !!! Morgane Thomas-Chollier What is the biological question? Gene set advanced analysis Gene set analysis Should drive all « downstream » analyses Will take time to « do it all » !!!! # What is the biological question? What can be the following experimental work? ### What is the biological question? What can be the following experimental work? - → cell biology (eg: luciferase assay)? - → in vitro assays (eg: EMSA) ? - → Proteomic (eg: mass spectrometry) ? - → Transgenics? - → Will depend on - √ the organism - ✓ available infrastructure # What is the biological question? - Where do a transcription factor (TF) bind? - ✓ In a specific context (tissue, developmental stage, mutant) - ✓ By comparison to another context (WT vs mutant, different time points) - How do a transcription factor (TF) bind? - √ Which binding motif(s) (can be several for a given TF !!) - ✓ Is the binding direct to DNA or via protein-protein interactions? - ✓ Are there cofactors (maybe affecting the motif !!), and if so, identify them - Which regulated genes are directly regulated by a given TF? - What are the targets of a given TF? - Where are the promoters (PollI) and chromatin marks? ### de novo motif discovery - Find exceptional motifs based on the sequence only (A priori no knowledge of the motif to look for) - Criteria of exceptionality: - higher/lower frequency than expected by chance (over-/under-representation) - concentration at specific positions relative to some reference coordinate (positional bias) Morgane Thomas-Chollier # de novo motif discovery - Tools already exist for a long time! - MEME (1994) - RSAT oligo-analysis (1998) - AlignACE (2000) - Weeder (2001) - MotifSampler (2001) Why do we need new approaches for genome-wide datasets? ## New approaches for ChIP-seq datasets - Size, size, size - limited numbers of promoters and enhancers - dozens of thousands of peaks !!!!!! - promoters: 200-2000bp from co-regulated genes - peaks: 300bp, positional bias - motif analysis: not just for specialists anymore! - complete user-friendly workflows Morgane Thomas-Chollier http://www.genomeguest.com/landing-pages/ODI-webinar-web.html ### Peak-motifs • de novo motif discovery (peak-motifs in RSAT) Morgane Thomas-Chollier Thomas-Chollier et al Nucleic Acids Research, 2012 # Peak-motifs: why providing yet another tool? - fast and scalable - treat full-size datasets - complete pipeline - · web interface - accessible to non-specialists - Demo buttons - Tutorials & Protocols Thomas-Chollier, Darbo, Herrmann, Defrance, Thieffry, van Helden **Nature Protocols**,2012 - HTML report Morgane Thomas-Chollier ### Hands on! - Go to the companion website - Follow all steps of Motif analysis # Acknowledgements Jacques van Helden Denis Thieffry Carl Herrmann Mathieu Defrance Olivier Sand Elodie Darbo http://rsat.eu Janick Mathys (VIB) for inviting me for this training! # Possible topics for discussion It's common practice to sequence the input deeper than the treatment. Why? Importance of the mapping tool ? Single-end or paired-end sequencing? Why do we find peaks that do not have two opposite read densities? ChIP-seq or ChIP-exo? I see ChIP-seq peaks specifically on exons, should I worry?